Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 115(1): 1-10, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769441

RESUMO

Some species are able to hybridize despite being exceptionally diverged. The causes of this variation in accumulation of reproductive isolation remain poorly understood, and domestication as an impetus or hindrance to reproductive isolation remains to be characterized. In this study, we investigated the role of divergence time, domestication, and mismatches in morphology, habitat, and clutch size among hybridizing species on reproductive isolation in the bird order Galliformes. We compiled and analyzed hybridization occurrences from literature and recorded measures of postzygotic reproductive isolation. We used a text-mining approach leveraging a historical aviculture magazine to quantify the degree of domestication across species. We obtained divergence time, morphology, habitat, and clutch size data from open sources. We found 123 species pairs (involving 77 species) with known offspring fertility (sterile, only males fertile, or both sexes fertile). We found that divergence time and clutch size were significant predictors of reproductive isolation (McFadden's Pseudo-R2 = 0.59), but not habitat or morphological mismatch. Perhaps most interesting, we found a significant relationship between domestication and reproductive compatibility after correcting for phylogeny, removing extreme values, and addressing potential biases (F1,74 = 5.43, R2 = 0.06, P-value = 0.02). We speculate that the genetic architecture and disruption in selective reproductive regimes associated with domestication may impact reproductive isolation, causing domesticated species to be more reproductively labile.


Assuntos
Galliformes , Feminino , Animais , Masculino , Galliformes/genética , Domesticação , Fertilidade/genética , Reprodução , Hibridização Genética , Isolamento Reprodutivo , Especiação Genética
2.
Front Genet ; 14: 1297271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075683

RESUMO

Introduction: Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs. Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey's landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation. Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017. Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions.

3.
BMC Genomics ; 24(1): 160, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991322

RESUMO

BACKGROUND: Metabolic detoxification is one of the major mechanisms contributing to the development of resistance in mosquitoes, including the southern house mosquito, Culex quinquefasciatus. The three major detoxification supergene families, cytochrome P450s, glutathione S-transferases and general esterases, have been demonstrated to play an important role in metabolic resistance. In this study, we performed differential gene expression analysis based on high-throughput transcriptome sequencing on samples from four experimental groups to give insight into key genes involved in metabolic resistance to malathion in Cx. quinquefasciatus. We conducted a whole transcriptome analysis of field captured wild Cx. quinquefasciatus from Harris County (WI), Texas and a malathion susceptible laboratory-maintained Sebring colony (CO) to investigate metabolic insecticide resistance. Field captured mosquitoes were also phenotypically classified into the malathion resistant and malathion susceptible groups following a mortality response measure conducted using a Centers for Disease Control and Prevention (CDC) bottle assay. The live (MR) and dead (MS) specimens from the bottle assay, along with an unselected WI sample and a CO sample were processed for total RNA extraction and subjected to whole-transcriptome sequencing. RESULTS: We demonstrated that the genes coding for detoxification enzymes, particularly cytochrome P450s, were highly up-regulated in the MR group compared to the MS group with similar up-regulation observed in the WI group compared to the CO group. A total of 1,438 genes were differentially expressed in comparison between MR and MS group, including 614 up-regulated genes and 824 down-regulated genes. Additionally, 1,871 genes were differentially expressed in comparison between WI and CO group, including 1,083 up-regulated genes and 788 down-regulated genes. Further analysis on differentially expressed genes from three major detoxification supergene families in both comparisons resulted in 16 detoxification genes as candidates potentially associated with metabolic resistance to malathion. Knockdown of CYP325BC1 and CYP9M12 using RNA interference on the laboratory-maintained Sebring strain significantly increased the mortality of Cx. quinquefasciatus after exposure to malathion. CONCLUSION: We generated substantial transcriptomic evidence on metabolic detoxification of malathion in Cx. quinquefasciatus. We also validated the functional roles of two candidate P450 genes identified through DGE analysis. Our results are the first to demonstrate that knockdown of CYP325BC1 and CYP9M12 both significantly increased malathion susceptibility in Cx. quinquefasciatus, indicating involvement of these two genes in metabolic resistance to malathion.


Assuntos
Culex , Culicidae , Inseticidas , Humanos , Animais , Malation/farmacologia , Inseticidas/farmacologia , Culex/genética , Permetrina , Interferência de RNA , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética
4.
Ecol Evol ; 13(1): e9689, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36620416

RESUMO

The most diverged avian hybrid that has been documented (Numida meleagris × Penelope superciliaris) was reported in 1957. This identification has yet to be confirmed, and like most contemporary studies of hybridization, the identification was based on phenotype, which can be misleading. In this study, we sequenced the specimen in question and performed analyses to validate the specimen's parentage. We extracted DNA from the specimen in a dedicated ancient DNA facility and performed whole-genome short-read sequencing. We used BLAST to find Galliformes sequences similar to the hybrid specimen reads. We found that the proportion of BLAST hits mapped overwhelmingly to two species, N. meleagris and Gallus gallus. Additionally, we constructed phylogenies using avian orthologs and parsed the species placed as sister to the hybrid. Again, the hybrid specimen was placed as a sister to N. meleagris and G. gallus. Despite not being a hybrid between N. meleagris and P. superciliaris, the hybrid still represents the most diverged avian hybrid confirmed with genetic data. In addition to correcting the "record" of the most diverged avian hybrid, these findings support recent assertions that morphological and behavioral-based identifications of avian hybrids can be error-prone. Consequently, this study serves as a cautionary tale to researchers of hybridization.

5.
Genes (Basel) ; 13(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205423

RESUMO

Single-cell sequencing technologies have led to a revolution in our knowledge of the diversity of cell types, connections between biological levels of organization, and relationships between genotype and phenotype. These advances have mainly come from using model organisms; however, using single-cell sequencing in non-model organisms could enable investigations of questions inaccessible with typical model organisms. This primer describes a general workflow for single-cell sequencing studies and considerations for using non-model organisms (limited to multicellular animals). Importantly, single-cell sequencing, when further applied in non-model organisms, will allow for a deeper understanding of the mechanisms between genotype and phenotype and the basis for biological variation.


Assuntos
Fenótipo , Animais , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA